
NAVAL AIR WARFARE CENTER TRAINING SYSTEMS DIVISION ORLANDO FLORIDA

Human Systems Technology Roadmap

John Owen and Bob Seltzer 8/23/2017

DISCLAIMER

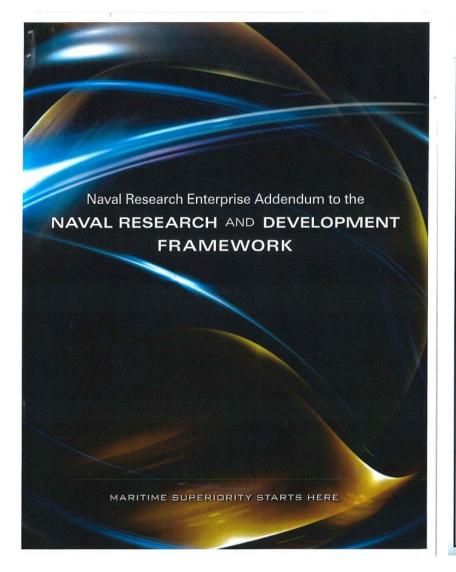
The information about to be presented affords industry partners insight into on-going and pending acquisitions.

Significant portions of the information are planning in nature and are subject to change throughout the acquisition planning and acquisition strategy approval process, and in response to NAVAIRSYSCOM, DASN(A&LM) and DPAP peer reviews.

"All I'm saying is, now is the time to develop the technology to deflect an asteroid."

Motivation

Roadmaps are Used as Decision Aids to Improve Coordination of Activities & Resources Specific Uses Include:


- S&T Mgt: Strategy, Planning, Execution, Reviewing & Transitioning
- Enhancing Communication Among Researchers, Technologists, Product Mgrs and other Stakeholders
- Identify Gaps & Opportunities in S&T Programs
- Identify Obstacles to Rapid & Low-cost Product Development
- Identify S&T areas that have high potential promise
- Accelerate/facilitate the transition of S&T to Eventual Products on programs of record

CNR Framework for Accelerating the Navy & Marine Corps After Next

PRIORITIES

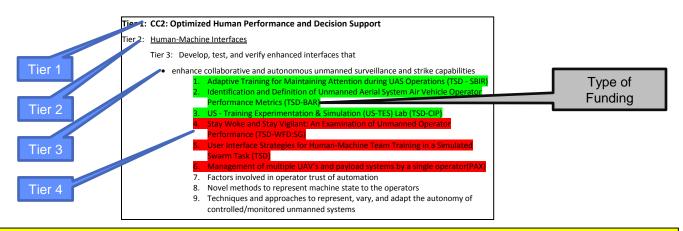
Framework Priority	Objectives	Research Sub Topics	*Future Force Attributes
Augmented Warfighter	Enhance decision-making speed and quality Improve human-machine interfaces and teaming Mitigate tactical-level risk to our people and command, control and communications degradation	Algorithmic phenomenology; autonomy; artificial intelligence; machine reasoning; cognitive science; decision-making; human systems design; human- machine interaction; and training and education	Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Lethal, Trained, Fast
Integrated & Distributed Forces	Enhance dynamic, synchronized actions across forces Support collaboration spanning geography, domains, platforms and joint partners; leverage satellite and Precision Navigation and Timing advancements Increase flexibility and reach of the naval force through incorporation of autonomous and disaggregate systems	Autonomous platforms; communications and networks; networked sensors and weapons; positioning, navigation and timing; and coordinated spectrum and signature management	Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Scalable, Fast
Operational Endurance	Enable maneuverability, efficiency, and resiliency for sustained operations by warfighters, systems and platforms (regardless of the threat or operating environment) Improve platform-level energy storage/efficiency for propulsion and weapons systems Develop wide-area and force wide disinformation deception and decoys	Power generation, storage, energy efficiency; survivability, endurance and availability; security/protection; platform affordability; high-performance materials; biomedical; and logistics and sustainment	Adaptive, Agile, Defensible, Distributable, Efficient, Sustainable
Sensing & Sense-Making	Transform vast data into timely knowledge Enable persistent awareness and understanding, and optimized operation (regardless of the threat or operating environment) Integrate artificial intelligence into C4ISR networks scalable to theater wide	Multi-domain and multi- spectral sensors; digital algorithms and data sciences; quantum information sciences; and modeling, simulation and forecasting of the operational environment	Adaptive, Agile, Autonomous, Connected, Distributable, Interoperable, Scalable, Fast
Scalable Lethality	Enable offensive and defensive actions that are multi-domain, integrated, cost-effective, and kinetic and non-kinetic Deliver directed energy and low cost, high probability of kill standoff strike	Cyber/algorithmic effects; countermeasures and decoys; counter-weapons, threat neutralization and explosive ordnance disposal; targeting sensors; directed energy and electric weapons; energetics; and lower cost, higher performance weapons	Adaptive, Agile, Autonomous, Connected, Defensible, Distributable, Efficient, Fast, Interoperable, Lethal, Scalable, Sustainable

AIR 4.6 Core Capabilities Document

- Human Systems Department (AIR-4.6) provides expertise, world-class facilities, resources, products, and services to optimize human performance, protection, and survivability within the totality of the military weapon system.
- AIR-4.6 integrates following elements of Human Systems Integration (HSI); human engineering; manpower, personnel, and training; health hazard mitigation; safety, medical, and survivability factors; and habitability considerations into the systems design and acquisition process for all phases of the systems life cycle.
- The five top-level AIR 4.6 Core Capabilities (as defined in AIR 4.6's Core Capabilities document, dated 2016) are:
 - Human Systems Engineering, Integration, and Acquisition
 - Optimized Human Performance and Decision Support
 - Advanced Training Systems Technology
 - Human Systems Design, Analysis, and Evaluation
 - Warfighter Protection, Performance, and Survivability

AIR-4.6 will continue to develop its capabilities to meet the current and future needs of the Fleet

Technology Roadmap Taxonomy

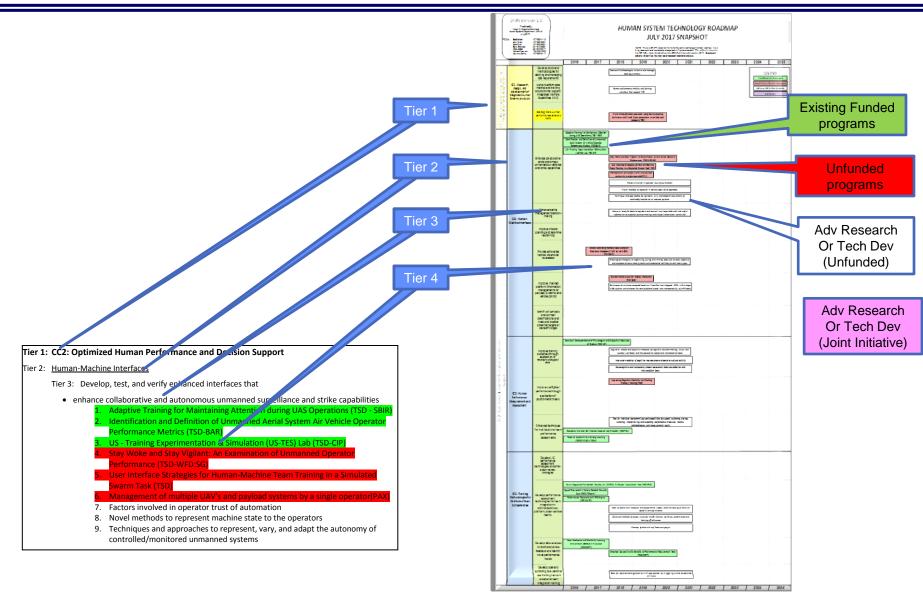

Tier 1: One of the five AIR 4.6 Core Capabilities (as defined in AIR 4.6's Core Capabilities document, dated 2016)

- Human Systems Engineering, Integration, and Acquisition
- Optimized Human Performance and Decision Support
- Advanced Training Systems Technology
- Human Systems Design, Analysis, and Evaluation
- Warfighter Protection, Performance, and Survivability

Tier 2: Current Capabilities or S&T/R&D focus areas (as defined in AIR 4.6's Core Capabilities document, dated 2016)

Tier 3: Specific Technical Sub-areas within AIR 4.6 Current Capabilities

Tier 4: Future Technical areas (areas that will mature existing or develop new capabilities baselines) Funded , Unfunded Adv Research Or Tech Dev (Unfunded) . Funded items taken from current NAWCTSD Grey Book and existing funded NAVAIR S&T proposals.



Note: As technology associated with training and crew systems evolves this Roadmap will likely include additional topics in tiers 1-4, and the timeline for maturity may be adjusted as more information is included.

Technology Roadmap

Example Drill Down: CC #2

TIER 1: Adv. Training Systems Technology

- TIER 2: High Fidelity Training Environments
 - TIER 3: Create software development environments to design and maintain high-fidelity trainers
 - TIER 3: Dev. real-time flight aerodynamic and visual simulation technologies
 - TIER 3: Develop speech recognition, synthesis functionality, and computational methods to recognize the difference between relevant and irrelevant speech
 - TIER 3: Develop multi-modal sensory simulation systems and integrate into Tactical Software training applications
 - TIER 3: Develop multi-touch interaction and 3D models

TIER 2: Simulation Interoperability and Distributed LVC Technology

- TIER 3: Dev. interoperable LVC & Cyber Warfare trg simulation & technologies
- TIER 3: Dev. Multi-Level Security Methods to safeguard classified information in the LVC environments
- TIER 3: Develop Mission Rehearsal Enabled Database Methods for collecting and packaging authoritative data feed
- TIER 3: Develop tools for Enhanced Constructive Env. to support instructor inserted dynamic changes to simulated environmental conditions
- TIER 3: Dev. Information Load Management methods, technologies, and tools

Technology Roadmap Development Plans

	FY17			
Activity	Jul	Aug	Sep	FY18+
Draft Roadmap Complete				
Competency Management Review				
Training Industry Roadmap Workshop		*		
Industry Input Phase				
Workforce Briefs and Surveys				
FY17 Technology Roadmap Complete			7	
Tech Roadmap Life Cycle Updates				

Technology Roadmap is a living document with our first draft completed 01 Oct 2017

How can you participate

This is an evolving process of creating and implementing a roadmap and monitoring and updating it as necessary. The goal is to engage and align diverse stakeholders in a common course of action. You can participate by:

- Identifying additional Technology/Methodology areas of interest
- Identifying teaming opportunities for areas of interest
- Provide suggestions on metrics and milestones to allow regular tracking of progress